Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Pathogens ; 11(8)2022 Jul 30.
Article in English | MEDLINE | ID: covidwho-2023963

ABSTRACT

Epstein-Barr virus (EBV) was discovered in 1964 in the cell line of Burkitt lymphoma and became first known human oncogenic virus. EBV belongs to the Herpesviridae family, and is present worldwide as it infects 95% of people. Infection with EBV usually happens during childhood when it remains asymptomatic; however, in adults, it can cause an acute infection known as infectious mononucleosis. In addition, EBV can cause wide range of tumors with origins in B lymphocytes, T lymphocytes, and NK cells. Its oncogenicity and wide distribution indicated the need for vaccine development. Research on mice and cultured cells as well as human clinical trials have been in progress for a few decades for both prophylactic and therapeutic EBV vaccines. The main targets of the vaccines are EBV envelope glycoproteins such as gp350 and EBV latent genes. The long wait for the EBV vaccine is due to the complexity of the EBV replication cycle and the wide range of its host cells. Although some strategies such as the use of dendritic cells and recombinant Vaccinia viral vectors have shown success, ongoing clinical trials using mRNA-based vaccines as well as new delivery systems as nanoparticles are yet to show the best choice of vaccine target and its production strategy.

2.
Microb Pathog ; 168: 105512, 2022 Jul.
Article in English | MEDLINE | ID: covidwho-1889691

ABSTRACT

INTRODUCTION: Coronavirus disease 2019 (COVID-19) is an illness caused by the new coronavirus severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). It has affected public health and the economy globally. Currently approved vaccines and other drug candidates could be associated with several drawbacks which urges developing alternative therapeutic approaches. AIM: To provide a comprehensive review of anti-SARS-CoV-2 activities of plants and their bioactive compounds. METHODS: Information was gathered from diverse bibliographic platforms such as PubMed, Google Scholar, and ClinicalTrials.gov registry. RESULTS: The present review highlights the potential roles of crude extracts of plants as well as plant-derived small molecules in inhibiting SARS-CoV-2 infection by targeting viral or host factors essential for viral entry, polyprotein processing, replication, assembly and release. Their anti-inflammatory and antioxidant properties as well as plant-based therapies that are under development in the clinical trial phases-1 to 3 are also covered. CONCLUSION: This knowledge could further help understanding SARS-CoV-2 infection and anti-viral mechanisms of plant-based therapeutics.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , Virus Internalization
3.
Emerg Microbes Infect ; 11(1): 1371-1389, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1806183

ABSTRACT

Currently, SARS-CoV-2, especially the Omicron strain, is ravaging the world and even co-infecting human beings with IAV, which is a serious threat to human public health. As of yet, no specific antiviral drug has been discovered for SARS-CoV-2. This requires deeper understandings of the molecular mechanisms of SARS-CoV-2-host interaction, to explore antiviral drug targets and provide theoretical basis for developing anti-SARS-CoV-2 drugs. This article discussed IAV, which has been comprehensively studied and is expected to provide the most important reference value for the SARS-CoV-2 study apart from members of the Coronaviridae family. We wish to establish a theoretical system for the studies on virus-host interaction. Previous studies have shown that host PRRs recognize RNAs of IAV or SARS-CoV-2 and then activate innate immune signaling pathways to induce the expression of host restriction factors, such as ISGs, to ultimately inhibit viral replication. Meanwhile, viruses have also evolved various regulatory mechanisms to antagonize host innate immunity at transcriptional, translational, post-translational modification, and epigenetic levels. Besides, viruses can hijack supportive host factors for their replication. Notably, the race between host antiviral innate immunity and viral antagonism of host innate immunity forms virus-host interaction networks. Additionally, the viral replication cycle is co-regulated by proteins, ncRNAs, sugars, lipids, hormones, and inorganic salts. Given this, we updated the mappings of antiviral drug targets based on virus-host interaction networks and proposed an innovative idea that virus-host interaction networks as new antiviral drug targets for IAV and SARS-CoV-2 from the perspectives of viral immunology and systems biology.


Subject(s)
COVID-19 , Influenza A virus , Antiviral Agents/pharmacology , Host Microbial Interactions , Host-Pathogen Interactions , Humans , Immunity, Innate , Influenza A virus/physiology , SARS-CoV-2 , Virus Replication
4.
Front Cell Infect Microbiol ; 11: 792202, 2021.
Article in English | MEDLINE | ID: covidwho-1595214

ABSTRACT

Since its emergence in China at the end of 2019, SARS-CoV-2 has rapidly spread across the world to become a global public health emergency. Since then, the pandemic has evolved with the large worldwide emergence of new variants, such as the Alpha (B.1.1.7 variant), Beta (B.1.351 variant), and Gamma (P.1 variant), and some other under investigation such as the A.27 in France. Many studies are focusing on antibody neutralisation changes according to the spike mutations, but to date, little is known regarding their respective replication capacities. In this work, we demonstrate that the Alpha variant provides an earlier replication in vitro, on Vero E6 and A549 cells, than Beta, Gamma, A.27, and historical lineages. This earlier replication was associated with higher infectious titres in cell-culture supernatants, in line with the higher viral loads observed among Alpha-infected patients. Interestingly, Beta and Gamma variants presented similar kinetic and viral load than the other non-Alpha-tested variants.


Subject(s)
COVID-19 , SARS-CoV-2 , Viral Load , COVID-19/virology , Humans , Kinetics , Pandemics
5.
Cell Mol Life Sci ; 78(23): 7777-7794, 2021 Dec.
Article in English | MEDLINE | ID: covidwho-1491058

ABSTRACT

The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.


Subject(s)
Phospholipases A2/pharmacology , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/metabolism , Viper Venoms/pharmacology , Virus Attachment/drug effects , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibody Affinity/drug effects , Antiviral Agents/pharmacology , Cell Fusion , Cell Line , Chlorocebus aethiops , Cytopathogenic Effect, Viral/drug effects , HEK293 Cells , Humans , Models, Molecular , Protein Domains/drug effects , Surface Plasmon Resonance , Vero Cells , Viper Venoms/enzymology , COVID-19 Drug Treatment
6.
Front Microbiol ; 12: 675152, 2021.
Article in English | MEDLINE | ID: covidwho-1256388
7.
Indian J Med Res ; 152(1 & 2): 70-76, 2020.
Article in English | MEDLINE | ID: covidwho-710536

ABSTRACT

BACKGROUND & OBJECTIVES: The genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), belonging to the family Coronaviridae, encodes for structural, non-structural, and accessory proteins, which are required for replication of the virus. These proteins are encoded by different genes present on the SARS-CoV-2 genome. The expression pattern of these genes in the host cells needs to be assessed. This study was undertaken to understand the transcription pattern of the SARS-CoV-2 genes in the Vero CCL-81 cells during the course of infection. METHODS: Vero CCL-81 cells were infected with the SARS-CoV-2 virus inoculum having a 0.1 multiplicity of infection. The supernatants and cell pellets were harvested after centrifugation at different time points, post-infection. The 50% tissue culture infective dose (TCID50)and cycle threshold (Ct) values of the E and the RdRp-2 genes were calculated. Next-generation sequencing of the harvested sample was carried out to observe the expression pattern of the virus by mapping to the SARS-CoV-2 Wuhan HU-1 reference sequence. The expressions were in terms of the reads per kilobase million (RPKM) values. RESULTS: In the inital six hours post-infection, the copy numbers of E and RdRp-2 genes were approximately constant, which raised 10 log-fold and continued to increase till the 12 h post-infection (hpi). The TCID50 was observed in the supernatant after 7 hpi, indicating the release of the viral progeny. ORF8 and ORF7a, along with the nucleocapsid transcript, were found to express at higher levels. INTERPRETATION & CONCLUSIONS: This study was a step towards understanding the growth kinetics of the SARS-CoV-2 replication cycle. The findings indicated that ORF8 and ORF7b gene transcripts were expressed in higher amounts indicating their essential role in viral replication. Future studies need to be conducted to explore their role in the SARS-CoV-2 replication.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/genetics , Pneumonia, Viral/genetics , Transcriptome/genetics , Animals , Betacoronavirus/pathogenicity , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Pandemics , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , SARS-CoV-2 , Vero Cells/virology , Virus Replication/genetics
SELECTION OF CITATIONS
SEARCH DETAIL